PLS discriminant analysis for functional data
نویسندگان
چکیده
Partial least squares regression on functional data is applied in the context of linear discriminant analysis with binary response. The discriminant coefficient function is then used to compute scores which allow to assign a new curve to one of the two classes. The method is applied to gait data and the results are compared with those given by linear discriminant analysis and logistic regression on the principal components of predictors.
منابع مشابه
PLS classification of functional data
Partial least squares (PLS) approach is proposed for linear discriminant analysis (LDA) when predictors are data of functional type (curves). Based on the equivalence between LDA and the multiple linear regression (binary response) and LDA and the canonical correlation analysis (more than two groups), the PLS regression on functional data is used to estimate the discriminant coefficient functio...
متن کاملFisher’s Linear Discriminant Analysis for Weather Data by reproducing kernel Hilbert spaces framework
Recently with science and technology development, data with functional nature are easy to collect. Hence, statistical analysis of such data is of great importance. Similar to multivariate analysis, linear combinations of random variables have a key role in functional analysis. The role of Theory of Reproducing Kernel Hilbert Spaces is very important in this content. In this paper we study a gen...
متن کاملPartial Least Squares Structural Equation Modeling Approach for Analyzing a Model with a Binary Indicator as an Endogenous Variable
In this paper, we focus on PLS-SEM’s ability to handle models with observable binary outcomes. We examine the different ways in which a binary outcome may appear in a model and distinguish those situations in which a binary outcome is indeed problematic versus those in which one can easily incorporate it into a PLS-SEM analysis. Explicating such details enables IS researchers to distinguish dif...
متن کاملPLS dimension reduction for classification with microarray data.
Partial Least Squares (PLS) dimension reduction is known to give good prediction accuracy in the context of classification with high-dimensional microarray data. In this paper, the classification procedure consisting of PLS dimension reduction and linear discriminant analysis on the new components is compared with some of the best state-of-the-art classification methods. Moreover, a boosting al...
متن کاملA New Method Combining LDA and PLS for Dimension Reduction
Linear discriminant analysis (LDA) is a classical statistical approach for dimensionality reduction and classification. In many cases, the projection direction of the classical and extended LDA methods is not considered optimal for special applications. Herein we combine the Partial Least Squares (PLS) method with LDA algorithm, and then propose two improved methods, named LDA-PLS and ex-LDA-PL...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005